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ABSTRACT: We report an observation of spin−orbit excited dipole-bound
states (DBSs) in arginine−iodide complexes (Arg·I−) by using temperature-
dependent, wavelength-resolved “iodide-tagging” negative ion photoelectron
spectroscopy. The observed DBSs are bound to the spin−orbit excited
I(2P1/2) level of the neutral Arg·I complex in zwitterionic conformations and
identified based on the resonant enhancement due to spin−orbit electronic
autodetachment from the I(2P1/2) DBS to the I(2P3/2) neutral ground state.
The observed DBS binding energies are correlated to the dipole moments of
neutral Arg·I isomers and tautomers. This work thus demonstrates a new
and generic spectroscopic approach to identify ion−molecule cluster
conformations based on their distinguishable dipole moments.

Anionic nonvalence states are ubiquitous in nature and
serve as an effective “doorway” to many important

electron-mediated processes including the capture of low-
energy electrons,1,2 formation of interstellar species,3 electron-
driven proton transfers,4 as well as electron transfers in
biological systems.5−7 The excess electron in nonvalence states
can be attached via Rydberg electron transfer to a polar
molecule8 or photoinduced charge-transfer from a nearby
valence-bound anion.9,10 The dipole-bound state (DBS)11−14

with an excess electron bound to a neutral core via long-range
charge−dipole interactions is most commonly observed and
has been accessed via resonant photoexcitation of the
corresponding valence-bound anion, where the velocity-map
imaging (VMI) photoelectron spectroscopy (PES) technique
is adopted to probe resonant vibrational autodetachments from
the DBS.15−18 These studies not only identified specific DBSs
and concluded that the electron binding energy (EBE) of a
DBS correlates with the neutral dipole moment19 but also
revealed dynamics of various processes associated with DBSs,
i.e., autodetachment and internal conversion or intersystem
crossing to a valence-bound state.20−24 In principle, DBSs
should also exist for anionic clusters as long as their
corresponding neutral states have a sufficiently large dipole
moment. Indeed, such DBSs have been observed and
confirmed by Johnson and co-workers in a series of
photofragmentation action spectroscopic studies on various
solvated halide clusters.25,26 Anionic clusters have long been
considered as ideal model systems to mimic chemical and
physical processes in bulk and at interfaces.27 The character-
ization of their DBSs could serve as a scale that measures the
dipole moment, which is a useful physical property in solving

problems like distinguishing characteristic conformational
isomers of complex ion−molecular clusters of interest, i.e.,
the canonical vs zwitterionic isomers of amino acids.28

Characterization of the DBSs of such clusters has been a
challenging task. The strong intramolecular interactions in
anionic clusters lead to high EBEs (often >4 eV), while the
popular VMI-PES approach lacks a practical background
subtraction method and suffers from a background noise
issue18 that would make it difficult to use. On the other hand,
PES with a magnetic-bottle (MB) analyzer is capable of
affording shot-to-shot background subtraction and is well-
suited for studying high EBE species, but has a detection
efficiency cutoff problem for low kinetic energy electrons.27 As
shown in Figure 1a, given the nature of the DBS, it is close
lying to the neutral potential energy surface. As a result of the
Δν = −1 propensity rule that autodetachment only occurs
between adjacent vibrational levels29 and the autodetached
electrons possess extremely small electron kinetic energies, this
makes them difficult to detect with a MB analyzer.
Herein, we propose a new protocol toward probing the

isomer-specific DBSs of anion−molecule clusters using the
arginine-iodide (Arg·I−) complex as a case study, in which the
spin−orbit excited DBSs are probed instead of the ground-
state DBSs. We chose an amino acid-iodide complex so that we
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could employ the recently developed “iodide-tagging” negative
ion PES technique30,31 to interpret electronic and structural
information on amino acid-iodide clusters using iodide as a
messenger. This approach is based on the fact that the PE
spectra of such clusters are expected to be dominated by
atomic iodide transitions that exhibit two distinct bands
separated by ∼0.9 eV arising from the 2P3/2 and

2P1/2 spin−
orbit states of the iodine atom,32−34 and different isomers can
then be identified from resolved peaks based on their slightly
different EBEs. The Arg·I− anion was used in this work, since
arginine possesses the largest proton affinity among the α-
amino acids,35 a key aspect affecting zwitterion stability.36 This
makes arginine an ideal target to form zwitterions,37,38 and
with large dipole moments due to the charge separation, this
will stabilize the DBSs formed via photoexcitation charge
transfer from iodide to the arginine moiety. The existence of
two spin−orbit states for iodine suggests there will be two

DBSs for iodide clusters separated by ∼0.9 eV due to the
spin−orbit splitting of iodine. This should lead to a brand-new
autodetachment scenariofrom the 2P1/2 spin−orbit excited
DBS state to the 2P3/2 neutral state (spin−orbit electronic
autodetachment, Figure 1b)with sufficient kinetic energies
for photoelectrons to be detected in the MB analyzer.
Therefore, this new scheme enables DBSs of anionic clusters
to be probed based on their resonance enhancement and has
the capability of distinguishing different conformers with
distinct dipole moments. In this Letter, we demonstrate
successful characterizations on conformer-resolved spin−orbit
excited DBSs of Arg·I− clusters, illustrating that the dipole
moments of clusters can be spectroscopically exploited as an
effective molecular descriptor to categorize distinct complex
isomers.
Multiple conformers and tautomers (henceforth referred to

as isomers) of the Arg·I− cluster anion were located by
theoretical computations, and their coexistence in the cluster
beams were confirmed by using temperature-dependent PES.
Computationally, three canonical (labeled as c1, c2, and c3,
where the letter “c” stands for canonical) and eight zwitterionic
(labeled as z1−z8, with the letter “z” standing for zwitterionic)
isomers were identified at the M06-2X/maug-cc-pVTZ(-PP)
level of theory (Figure 2), and their CCSD(T)//M06-2X
energies relative to the most stable isomer c1 are 1.36 and 1.48
for c2 and c3, and 1.24 to 2.90 kcal/mol for z1 to z8,
respectively (Table S1). All the Arg·I− isomers located by our
calculations have two N−H···I− hydrogen bonds, but fall into
two categories: z1 and z5−z8 have the iodide bound to the
two terminal NH2 groups of the guanidine, while the iodide in
c1−c3 and z2−z4 binds to one NH2 and the internal NH
position. Dipole moments for the neutral complexes of each
isomer were also computed (Figure 2 and Table S2), and the
three canonical structures have an average dipole moment of
10.2 D, while the zwitterionic isomers possess larger dipole
moments spanning from 10.3 to 15.7 D due to the charge
separation effect. Moreover, the zwitterionic structures exhibit

Figure 1. Schematic diagrams showing vibrational autodetachment
(a) and spin−orbit autodetachment (b) from DBS resonances.

Figure 2. Calculated canonical and zwitterionic structures of the Arg·I− complex anions. The blue vectors and the numbers aside indicate the dipole
moments of the corresponding neutral complexes with the anion geometries. The isomers with I− bound to two terminal NH2 groups are boxed in
with dashed lines.
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distinct dipole moments between the two categories of isomers
with those that have I− bound to two NH2 groups generally
being smaller in magnitude except for z7, which has a dipole
moment of 15.6 D. These features lay the foundation for the
characterization of these structures based upon their DBSs.
To confirm the preponderance of coexisting predicted

isomers in experiments, temperature-dependent PES was first
conducted. The observed 193 nm PE spectra at various
temperatures from 20 to 300 K (Figure 3) show more

complicated spectral profiles compared to the previous “iodide-
tagging” investigation of Gly·I− and its methyl substituted
derivatives.30,31 While the spectra also exhibit two nearly
identical band systems separated by ∼0.9 eV, the Ω = 3/2 and
Ω = 1/2 bands, each of which consists of two groups of peaks
separated by ∼0.1 eV (labeled A and B in the Ω = 3/2 band
system, and A* and B* in the Ω = 1/2 one). Since none of the
individual isomers solely reproduce the measured PE spectra
(Figure S1), the observed bands are assigned using multiple
isomers. Based on the good agreement between the calculated
vertical detachment energies (VDEs) of the different structures
(the brown and blue sticks in Figure 3 and Table S1) and
observed peak positions in the Ω = 3/2 band system (labeled
a−g), as well as the measured and simulated spectra (Figure
S2), peak a is assigned to the three canonical isomers c1, c2,
and c3. Peaks b and c in group A are assigned to isomers z1,
z5, z6, and z8, while peaks d−g in group B are assigned to z2,
z3, z4, and z7 (more details on the spectral assignments can be

found in the Supporting Information). Their temperature-
dependent populations derived from these spectra (Figure S3)
are consistent with their calculated thermochemical properties
(Table S3). Since the two groups of isomers have substantial
and distinguishable dipole moments and exhibit well-separated
bands, the identification of isomer-specific DBSs becomes
possible.
To dissect the congested spectral bands arising from various

isomers of Arg·I−, frequency-resolved PE spectra were
measured at various laser wavelengths in the range of 230−
250 nm (5.391−4.959 eV). Significant variations of the A/B
intensity ratio, and hence the spectral appearances, were
observed at different wavelengths (Figure S4), suggesting that
bands A and B have distinct resonances that have been reached
in the wavelength range. Figure 4 shows a typical set of the PE
spectra (panel b) and resonance profiles for bands A and B,
obtained by recording the total electron count rates with
normalized laser output energies at different wavelengths
(panel a). At a nonresonating wavelength, i.e., 193 or 250 nm,
bands A and B are similar in intensity, whereas the A/B
intensity ratio varies at other (resonant) wavelengths due to
resonance enhancement. For example, at 238 nm A dominates
over B, whereas the reverse is the case at 234 nm (Figure 4b),
and a clear resonating pattern is observed with maxima at 238
nm (5.21 eV) and 234 nm (5.30 eV) for bands A and B,
respectively (Figure 4a). Compared to the average VDEs of
4.44 and 4.70 eV for band systems A and B, the resonating
photodetachment energies of 5.21 and 5.30 eV are more than
0.6 eV higher in energy, which is far beyond the typical range
of vibronic couplings. Therefore, vibronic couplings in the Ω =
3/2 DBS of either σ-type or the recently observed π-type,39,40

both of which have much smaller binding energies, can be
excluded as the explanation for the observed resonances. The
resonant photodetachment energies, on the other hand, are
close to the EBE of the Ω = 1/2 band system, which exhibits
maxima at approximately 5.4 and 5.6 eV for A* and B*,
respectively (Figure 4a).
Hereby, we assign the observed photoelectron enhance-

ments due to autodetachment transitions from the resonances,
Ω = 1/2, spin−orbit excited DBSs to the ground Ω = 3/2
neutral complex (Figure 1b). The binding energies of these
DBSs can also be estimated based on the differences between
the resonant photodetachment energies and EBEs of the Ω =
1/2 states to be ∼0.2 eV for the isomers in group A and ∼0.3
eV for those in B. Note that these values are estimated based
on vertical transition energies, since we are unable to
determine the adiabatic transition energies due to the
complicated spectral profile. Nevertheless, there is a noticeable
difference between the magnitude of DBS binding energies
between the isomers in groups A and B with those in B
possessing larger DBS binding energies. Based on our current
assignment, A is mainly attributed to the mixture of z1/z5/z6/
z8 with an average dipole moment of 11.1 D, whereas B is
attributed to z2/z3/z4/z7 that possess an average dipole
moment of 15.1 D. We suspect the binding energies for the Ω
= 1/2 DBSs should be similar to those of the ground Ω = 3/2
states since the dipole moment remains largely the same for
both spin−orbit states. Careful examination of the spectra
indicate that there are also minor enhanced contributions from
the three canonical isomers (with an average dipole moment of
10.2 D) in the vicinity of the rising edge of A at the resonating
wavelength of 238 nm (Figure 4). It is difficult, however, to
precisely record these intensity changes.

Figure 3. 193 nm PE spectra of the Arg·I− complex obtained at
various temperatures (20 K (blue), 120 K (green), 200 K (orange),
and 300 K (red)). All spectra display two band systems, Ω = 3/2 and
Ω = 1/2, each of which is further divided into two groups, A (or A*
for Ω = 1/2) marked in light gray and B (or B* for Ω = 1/2) marked
in light yellow. The calculated M06-2X VDEs of the canonical
(brown) and zwitterionic (blue) isomers are represented by sticks at
the bottom of the figure.
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The estimated DBS binding energies, 0.2 eV (∼1600 cm−1)
and 0.3 eV (∼2400 cm−1) for isomers in groups A and B, are
more than two times larger than those previously investigated
in molecular DBSs,15 a fact that is reasonably argued given the
much larger dipole moments in the Arg·I complex.
Furthermore, the DBS binding energy ratio is estimated to

be ∼1.5 (0.3 eV vs 0.2 eV) for these two groups of isomers,
consistent with their calculated dipole moments (15.1 D vs
11.1 D). All these reasons support our assignments that the
observed spectral pattern variation as a function of photon
energy can be traced back to resonant autodetachment
following photoexcitation to the excited Ω = 1/2 DBSs in
the Arg·I− complex. To the best of our knowledge, this
represents the first unambiguous observation of DBSs that are
bound to spin−orbit excited neutral clusters, although such
type of DBS in a triatomic molecule has been discovered
before.41 The possible existence of spin−orbit excited DBSs in
halide ion−molecule clusters was discussed by Johnson and co-
workers. It was not observed, however, due to the Ω = 1/2
state being repulsive over the geometry of the ground state
complex.25 More excitingly, we can take advantage of these
spin−orbit excited DBSs to help spectroscopically identifying
different conformations in large ion−molecule clusters.
In conclusion, the isomer-specific spin−orbit excited DBSs

of various zwitterionic isomers of the Arg·I− complex have
been successfully located by the resonance enhancement of the
PE signal intensity in a photon energy range that is slightly
below the EBE range corresponding to different anion cluster
isomers. This is a result of electronic autodetachments from
spin−orbit 2P1/2 excited DBSs to the corresponding 2P3/2
neutral ground states. The DBS binding energies are found
to correlate with the magnitude of the neutral complexes
dipole moments, a result that enables dipole moments as an
important order parameter that has not been exploited to date
to distinguish different isomers including zwitterionic con-
formations in the ion spectroscopy of complex anion−
molecular clusters. This work demonstrates a proof-of-concept
that conventional MB-PES, when coupled with a tunable UV−
vis laser, turns out to be a new and effective approach to probe
and tackle complex isomeric issues of ion−molecular clusters
that usually have high electron detachment energies by
exploiting the spin−orbit excited DBSs. This discovery of a
generic spectroscopic tool will be useful for future biophysical
and chemical physics research that involves ion−molecule
interactions. Furthermore, competitions of electronic autode-
tachment against other possible channels, i.e., vibrational
autodetachment and internal conversion to a different
nonvalence or valence-bound state, remains a fascinating
question that warrants future studies.

■ EXPERIMENTAL METHODS
The PE spectra in this work were obtained using a MB
photoelectron spectrometer, combined with an electrospray
ionization (ESI) source and a temperature-controlled cryo-
genic ion trap, as described elsewhere.42 Multiple isomers of
the Arg·I− cluster were generated from solution via electro-
spraying an ∼0.1 mM mixture of both KI and arginine (1:1
ratio) dissolved in acetonitrile/water (3:1 v/v ratio). The
generated anions were transported by a radiofrequency
quadruple ion guide and first detected by a quadruple mass
spectrometer to optimize ESI conditions to ensure a stable and
intense cluster beam. The anions were then directed by a 90°
bender into the cryogenic 3D ion trap set at desired
temperatures (usually 20 K, unless otherwise mentioned),
where they were accumulated and cooled by collisions with
cold buffer gas (20% H2 balanced in He) for 20−100 ms.
During this process, multiple isomers of Arg·I− were kinetically
isolated and retained, before being pulsed out into the
extraction zone of the TOF mass spectrometer for mass

Figure 4. (a) Resonance profiles for band systems A (red) and B
(blue) by recording the normalized electron count rates at each
wavelength superimposed on the 20 K PE spectrum at 193 nm in the
Ω = 1/2 region (red and blue dash lines for A* and B*). (b) PE
spectra obtained at 20 K using photodetachment wavelengths of 193,
234, 238, and 250 nm, which clearly show relative intensity changes
for bands A and B.
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analysis. The anions of interest were mass-selected and
decelerated before being photodetached by a probe laser
beam in the interaction zone of the magnetic-bottle photo-
electron analyzer. Either a 193 nm (6.424 eV, GAM EX100F
ArF) excimer laser or a Nd:YAG laser (Spectra-Physics
Quanta-Ray Pro 270) pumped tunable OPO/OPA laser
(230−250 nm or 5.391−4.959 eV, Spectra-Physics PrimoScan
ULD500) beam was used for photodetachment, and operated
at a 20 Hz repetition rate with the anion beam off on
alternating laser shots to afford shot-by-shot background
subtraction. The photoelectrons were collected at nearly
100% efficiency by the magnetic-bottle and analyzed in a
5.2-m-long electron flight tube. The recorded flight times were
converted into calibrated kinetic energies using the known
spectrum of I−/Cu(CN)2

−.43−45 EBEs were subsequently
obtained by subtracting the electron kinetic energies from
the detachment photon energies with an electron energy
resolution (ΔE/E) of about 2%, i.e., ∼20 meV for 1 eV kinetic
energy electrons. Intensity ratios of different isomers in each
spectrum were obtained from the integrated signal counts over
a certain EBE range and then normalized for the laser pulse
energy and total number of scans.

■ COMPUTATIONAL DETAILS
Numerous initial structures for the Arg·I− cluster anions in
zwitterionic and canonical forms were systematically examined
with molecular dynamics searches using semiempirical
methods (AM146 and PM347) with the Spartan software.48

All conformations within 10 kcal mol−1 of the most stable one
were used as initial structures for subsequent optimizations.
Further geometry optimizations and harmonic frequency
analyses of all candidate anions and corresponding neutral
radicals were performed with DFT using the M06-2X
functional49 with Grimme’s GD3 dispersion corrections,50

which was benchmarked as a good choice for molecular
systems with ionic hydrogen-bonding interactions.28 No
symmetry constraints were used in the initial optimizations,
whereas appropriate point groups were used in subsequent
optimizations and frequency analyses. These calculations were
performed with the maug-cc-pVTZ51,52 (and maug-cc-pVTZ-
PP for I53) basis sets obtained from the EMSL basis set
exchange.54 Furthermore, CCSD(T)55,56 single-point-energy
calculations were carried out with the same basis set to refine
the relative energies of all cluster anion isomers. Unfortunately,
the CCSD(T) calculations for the open-shell neutral radicals
were too computationally demanding and exceeded our
resources. Therefore, the neutral dipole moment and vertical
detachment energy (VDE) of each isomer was refined using
the domain based local pair natural orbital coupled cluster
method [DLPNO−CCSD(T)],57 and the experimental values
were compared to both the M06-2X and DLPNO−CCSD(T)
results. The latter calculations were also carried out with maug-
cc-pVTZ(-PP) basis sets and the corresponding auxiliary basis
sets.58 All of the DFT calculations were carried out using the
Gaussian 16 software package59 whereas the CCSD(T) and
DLPNO−CCSD(T) computations were done with Molpro
2019.260 and ORCA 4.1.2,61 respectively. Additionally, the
Franck−Condon factors (FCFs) for spectral simulations
including Duschinsky rotations were computed with the
ezSpectrum program.62 The resulting simulated stick spectra
were also convoluted using the experimental line width (70
meV) and a Gaussian line shape to facilitate comparison with
the measured spectra.
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